On Bochner Ricci Semi-symmetric Hermitian Manifold
نویسندگان
چکیده
The aim of the present paper is to study a Bochner Ricci semi-symmetric quasi-Einstein Hermitian manifold (QEH)n, a Bochner Ricci semi-symmetric generalised quasi-Einstein Hermitian manifold G(QEH)n and a Bochner Ricci semisymmetric pseudo generalised quasi-Einstein Hermitian manifold P (GQEH)n.
منابع مشابه
Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures
In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کامل4 F eb 1 99 9 Weyl structures with positive Ricci tensor
We prove the vanishing of the first Betti number on compact manifolds admitting a Weyl structure whose Ricci tensor satisfies certain positivity condition. Thus we obtain a generalization of the vanishing theorem of Bochner, which has a particularly simple form in dimension 4. As a corollary we obtain that if the canonical Weyl structure on a compact Hermitian surface is non-exact, the symmetri...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn Submanifolds in a Riemannian Manifold with a Semi-Symmetric Non-Metric Connection
In this paper, we study submanifolds in a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection on a submanifold is also semi-symmetric non-metric connection. We consider the total geodesicness and minimality of a submanifold with respect to the semi-symmetric non-metric connection. We obtain the Gauss, Cadazzi, and Ricci equations for submanifold...
متن کامل